Saturday, 8 June 2013

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap

Jangan lupa membaca artikel tentang bisnis di > Informasi bisnis terbaik 2020.

1. Pertaksamaan $ 2x-a \gt \dfrac{x-1}{2}+\dfrac{ax}{3}$, mempunyai penyelesaian $ x \gt 5$. Nilai $a$ adalah...
Alternatif Pembahasan:

$\begin{align}
2x-a &\gt \dfrac{x-1}{2}+\dfrac{ax}{3} \\
2x-a &\gt \dfrac{3(x-1)}{2 \cdot 3}+\dfrac{2ax}{2 \cdot 3} \\
(2x-a) &\gt \dfrac{3x-3+2ax}{6} \\
6(2x-a) &\gt 3x-3+2ax \\
12x-6a &\gt 3x-3+2ax \\
12x-3x-2ax &\gt 6a-3 \\
x(9-2a) &\gt 6a-3 \\
x &\gt \dfrac{6a-3}{9-2a}
\end{align}$
karena penyelesaiannya pertaksamaan adalah $ x \gt 5$ maka:
$\begin{align}
5 &= \dfrac{6a-3}{9-2a} \\
5(9-2a) &= 6a-3 \\
45-10a &= 6a-3 \\
45 + 3 &= 6a + 10a \\
48 &= 16a \\
3 &= a
\end{align}$


2. Kesimpulan yang sah dari premis-premis berikut ini adalah...
Premis $(1)$: Jika hari panas maka Zeska memakai topi.
Premis $(2)$: Zeska tidak memakai topi atau ia memakai payung
Premis $(3)$: Zeska tidak memakai payung.
Alternatif Pembahasan:

misal pernyataan kita tulis dengan simbol
$\begin{align}
p &= \text{hari panas} \\
q &= \text{Zeska memakai topi } \\
r &= \text{Zeska memakai payung}
\end{align}$

Sehingga dengan menggunakan simbol premis $(1), (2)$ dan $(3)$ dapat kita tulis menjadi:
$\begin{align}
& (1)\ p\rightarrow q \\
&(2)\ \sim q \vee r\ \equiv q\rightarrow r \\
&(3)\ \sim r
\end{align}$

Dengan Konsep penarikan kesimpulan Silogisme $(1)$ dan $(2)$
$\begin{align}
&(1)\ p\rightarrow q \\
&(2)\ q\rightarrow r \\
\hline
&(4)\ p\rightarrow r
\end{align}$

Dengan Konsep penarikan kesimpulan Modus Tollens $(4)$ dan $(3)$
$\begin{align}
&(4)\ p\rightarrow r \\
&(3)\ \sim r \\
\hline
& \therefore\ \sim p
\end{align}$

Kesimpulan: hari tidak panas


3. Jika $ sin\ \theta =-\dfrac{1}{4}$ dan $ \theta \gt 0$, hitunglah $ cos\ \theta =\cdots$
Alternatif Pembahasan:

Dari soal kita peroleh bahwa $ sin\ \theta$ bernilai negatif dan $tan\ \theta$ bernilai positif berarti $ \theta$ berada di kwadran III.

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Dari gambar:
$ AB=\sqrt{4^{2}-(-1)^{2}}=\sqrt{15}$ dan $ AB$ bernilai negatif, sehingga $ AB=-\sqrt{15}$

$ cos\ \theta = \dfrac{AB}{AC}=\dfrac{-\sqrt{15}}{4}=-\dfrac{1}{4}\sqrt{15} $


4. Nilai dari $ \dfrac{tan\ 300^{\circ}}{sin\ 120^{\circ}-cos\ 210^{\circ}}\ =... $
Alternatif Pembahasan:

Nilai Perbandingan Trigonometri di atas dapat kita hitung dengan alternatif penyelesaian berikut;
$\begin{align}
& \dfrac{tan\ 300^{\circ}}{sin\ 120^{\circ}-cos\ 210^{\circ}} \\
& = \dfrac{tan\ (360-60)^{\circ}}{sin\ (180-60)^{\circ}-cos\ (180+30)^{\circ}} \\
& = \dfrac{-tan\ 60^{\circ}}{sin\ 60^{\circ}+cos\ 30^{\circ}} \\
& = \dfrac{-\sqrt{3}}{\dfrac{1}{2}\sqrt{3}+\dfrac{1}{2}\sqrt{3}} \\
& = \dfrac{-\sqrt{3}}{\sqrt{3}} = -1
\end{align}$


5.
Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Diketahui segitiga $ABC$ siku-siku di $B$,
$ cos\ \alpha =\dfrac{4}{5}\ dan\ tan\ \beta =1.$
Jika $AD = x$ maka nilai $AC = ...$
Alternatif Pembahasan:

Perhatikan:
$ cos\ \alpha =\dfrac{4}{5}\ =\dfrac{AB}{AC} $
dari persamaan diatas kita peroleh perbandingan panjang $AB$ dan panjang $AC$ sehingga panjang $AC$ dan panjang $AB$ dapat kita misalkan yaitu $AB = 4a$ dan $AC = 5a$.
$AD = x$ dan $AB = 4a$ maka $BD = 4a - x$.

Perhatikan:
$ tan\ \beta =1 =\dfrac{BC}{BD}$
dari persamaan diatas kita peroleh panjang $BC =BD$, maka $BC = BD = 4a - x$

Dengan konsep teorema pythagoras kita peroleh:
$\begin{align}
(4a)^{2}+(4a-x)^{2} &=(5a)^{2} \\
16a^{2}+16a^{2}-8ax+x^{2} &=25a^{2} \\
32a^{2}-25a^2-8ax+x^{2} &=0 \\
7a^{2}-8ax+x^{2} &=0 \\
(x-a)(x-7a)&=0
\end{align}$
Kita peroleh $ x = a$ atau $ x=7a$, pada saat $ x=7a$ tidak memenuhi (*kenapa tidak memenuhi?, coba Anda menyimpulkan sendiri dan sampaikan melalui kotak komentar)

Hasil akhir diperoleh $x = a$, maka panjang $AC$ saat $AD = x$ adalah $5x$.


6. Jika $ tan\ 2\alpha = 4 sin\ \alpha\ cos\ \alpha$, untuk $ \dfrac{\pi}{2}< \alpha\ <\pi$, maka $ cos\ \alpha=...$
Alternatif Pembahasan:

$\begin{align}
tan\ 2\alpha &= 4 sin\ \alpha\ cos\ \alpha \\
\dfrac{sin\ 2\alpha}{cos\ 2\alpha} &= 2\ \cdot\ 2 sin\ \alpha\ cos\ \alpha \\
\dfrac{sin\ 2\alpha}{cos\ 2\alpha} &= 2\ \cdot\ sin\ 2\alpha \\
\dfrac{1}{cos\ 2\alpha} &= 2 \\
\dfrac{1}{2} &= cos\ 2\alpha \\
\hline
cos\ 2\alpha &= 2cos^{2}\ \alpha -1 \\
\hline
\dfrac{1}{2} &= 2cos^{2}\ \alpha -1 \\
\dfrac{3}{2} &= 2cos^{2}\ \alpha \\
\dfrac{3}{4} &= cos^{2}\ \alpha \\
\pm \sqrt{\dfrac{3}{4}} &= cos\ \alpha \\
\pm \dfrac{\sqrt3}{2} &=cos\ \alpha
\end{align}$

Karena $ \alpha$ berada pada kwadran II maka $ cos\ \alpha = - \dfrac{\sqrt3}{2}$


7. Diketahui kubus ABCD.EFGH dengan panjang rusuk $4\ cm$ dan titik $P$ adalah titik tengah $CH$. Hitunglah jarak titik $P$ ke titik $B$.
Alternatif Pembahasan:

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Kubus $ABCD.EFGH$ dan titik $P$ kita gambarkan, [*seperti gambar]
Perhatikan segitiga $BCP$ adalah segitiga siku-siku di $C$, sehingga jarak titik $P$ ke $B$ adalah $BP$ dapat kita hitung dengan konsep teorema pythagoras, yaitu:
$\begin{align}
BP^{2} &= BC^{2}+CP^{2} \\
\hline
BC &= 4 \text{dan}\ CP=\dfrac{1}{2}CH=2\sqrt{2} \\
\hline
BP^{2} &=4^{2}+(2\sqrt{2})^{2} \\

BP^{2} &=16+8 \\

BP &=\sqrt{24} =2\sqrt{6}
\end{align}$


8. Diketahui kubus $ABCD.EFGH$ dengan panjang rusuk $ \sqrt{3}\ cm$ dan titik $T$ pada $AD$ sehingga $AT=1\ cm$. Jarak titik $A$ terhadap garis $BT$ adalah ...
Alternatif Pembahasan:

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Kubus $ABCD.EFGH$ dan titik $T$ kita gambarkan, [*seperti gambar]
Perhatikan segitiga $ABT$ adalah segitiga siku-siku di $A$, sehingga jarak titik $A$ ke garis $BT$ adalah tinggi segitiga dengan alas $BT$. $BT$ dapat kita hitung dengan konsep teorema pythagoras, yaitu:
$\begin{align}
BT^{2} &=AT^{2}+AB^{2} \\
&=1^{2}+(\sqrt{3})^{2} \\

&=1+3 \\

BT&=\sqrt{4}=2
\end{align}$

Dengan Konsep luas segitiga kita peroleh:
$\begin{align}
\dfrac{1}{2}BT\cdot AJ &=\dfrac{1}{2}AB\cdot AT \\
2\cdot AJ &=\sqrt{3}\cdot 1 \\
AJ &=\dfrac{\sqrt{3}}{2}
\end{align}$

Jarak titik $A$ ke garis $BT$ adalah $ AJ=\dfrac{1}{2}\sqrt{3}$


9. Kubus $ABCD.EFGH$ dengan panjang rusuk $ \sqrt{5}$, diketahui $P$ dan $Q$ masing-masing adalah titik tengah $FG$ dan $BC$. $ \theta$ adalah sudut antara bidang $ADP$ dan bidang $ADQ$. Hitunglah besar sudut $ \theta$.
Alternatif Pembahasan:

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Kubus $ABCD.EFGH$, titik $P$ dan titik $Q$ kita gambarkan sehingga bidang $ADP$ dan $ADQ$ dapat kita ilustrasikan seperti gambar di atas. Kita peroleh dari gambar garis persekutuan adalah $AD$

Untuk menentukan sudut antara bidang $ADP$ dengan $ADQ$ yaitu dengan menggambar garis pada bidang $ADP$ dan $ADQ$ yang tegak lurus dengan $AD$, pada gambar diberi nama garis $PR$ dan $QR$.

Sudut antara bidang $ADP$ dengan $ADQ$ adalah $sudut$ yang dibentuk oleh garis $PR$ dan $QR$ yaitu sudut $PRQ$ sehingga $ \angle PRQ= \theta$.
Dengan memperhatikan segitiga $PQR$ kita peroleh beberapa data:
  • segitiga siku-siku di $Q$
  • $PQ = QR$
Berdasarkan data di atas, segitiga $PQR$ adalah segitiga siku-siku sama kaki sehingga $ \angle PRQ=\angle QPR= \theta$
$\begin{align}
\angle PRQ +\angle QPR + \angle PQR &= 180^{\circ} \\
\theta +\theta + 90^{\circ} &= 180^{\circ} \\
2\theta &= 180^{\circ}-90^{\circ} \\
2\theta &= 90^{\circ} \\
\theta &= 45^{\circ}
\end{align}$


10. Masih kubus $ABCD.EFGH$ tetapi kali ini panjang rusuknya terserah Anda berapa panjangnya. Jika sudut antara bidang $EBG$ dengan bidang $EDG$ adalah $ \beta$ maka $ cos\ 2\beta\ =...$
Alternatif Pembahasan:

Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Kubus $ABCD.EFGH$, bidang $EBG$ dan bidang $EDG$ kita gambarkan, [*seperti gambar]. Kita peroleh dari gambar garis persekutuan adalah $EG$

Untuk menentukan sudut antara bidang $EBG$ dengan $EDG$ yaitu dengan menggambar garis pada bidang $EBG$ dan $EDG$ yang tegak lurus dengan $EG$, pada gambar diberi nama garis $DP$ dan $BP$.

Sudut antara bidang $EBG$ dengan $EDG$ adalah sudut yang dibentuk oleh garis $DP$ dan $BP$ yaitu sudut $BPD$ sehingga $ \angle BPD= \beta$.
Dengan memperhatikan segitiga $BPD$ kita peroleh $BP = DP$, dan $BP$ dapat kita hitung dengan konsep teorema pythagoras dari segitiga $BFP$, yaitu:$ BP^{2}=PF^{2}+BF^{2}$
Karena panjang rusuk kubus tidak diketahui, kita misalkan panjang rusuk kubus $2a$, sehingga:
$ BF =\ 2a$ dan $PF = a\sqrt{2}$
Dengan konsep teorema pythagoras kita peroleh:
$\begin{align}
BP^{2} &=(a\sqrt{2})^2+(2a)^2 \\
BP^{2} &=2a^2+4a^2 \\
BP &=\sqrt{6a^2} \\
BP &=a\sqrt{6}
\end{align}$

$ BD= 2a\sqrt{2},\ BP = DP =a\sqrt{6}$
Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap
Dengan menggunakan aturan cosinus pada segitiga $BDP$ diperoleh:
$\begin{align}
BD^{2} &=BP^{2}+DP^{2}-2\cdot BP\cdot DP\cdot cos\ \beta \\
(2a\sqrt{2})^{2} &=(a\sqrt{6})^{2}+(a\sqrt{6})^{2}-2\cdot a\sqrt{6}\cdot a\sqrt{6}\cdot cos\ \beta \\
8a^{2} &=6a^{2}+6a^{2}-2\cdot 6a^2\cdot cos\ \beta \\
4a^{2} &=12a^{2}-12a^2\cdot cos\ \beta \\
12a^{2}\cdot cos\ \beta &= 12a^{2}-8a^{2} \\
12a^{2}\cdot cos\ \beta &= 4a^{2} \\
cos\ \beta &= \dfrac{1}{3} \\
\hline
cos\ 2\beta &=2cos^{2}\ \beta -1 \\
cos\ 2\beta &=2\left(\dfrac{1}{3} \right)^{2} -1 \\
cos\ 2\beta &=2\left(\dfrac{1}{9} \right) -1 \\
cos\ 2\beta &=\dfrac{2}{9} -1 \\
cos\ 2\beta &=-\dfrac{7}{9}
\end{align}$


Jika engkau tidak sanggup menahan lelahnya belajar, Maka engkau harus menanggung pahitnya kebodohan ___pythagoras
Beberapa pembahasan soal Matematika Kelas X Penilaian Akhir Semester Genap di atas adalah coretan kreatif siswa pada
  • lembar jawaban penilaian harian matematika,
  • lembar jawaban penilaian akhir semester matematika,
  • presentasi hasil diskusi matematika atau
  • pembahasan quiz matematika di kelas.
Jadi saran, kritik atau masukan yang sifatnya membangun terkait Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap sangat diharapkan😊CMIIW

Jangan Lupa Untuk Berbagi 🙏Share is Caring 👀 dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLE😊

Video pilihan khusus untuk Anda 💗 Masih menganggap matematika hanya hitung-hitungan semata, mari kita lihat kreativitas siswa ini;
Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap Soal dan Pembahasan Matematika Kelas X Penilaian Akhir Semester Genap


Sumber https://www.defantri.com/

Selain sebagai media informasi pendidikan, kami juga berbagi artikel terkait bisnis.

0 comments:

Post a Comment