Ujian Nasional berbasis komputer sudah semakin dekat. Salah satu cara untuk melihat bagaimana tingkat pemahaman kita terhadap materi-materi yang sudah dipelajari adalah dengan coba membahas soal-soal simulasi UNBK.
Soal-soal UNBK nanti memang $100\%$ tidak sama dengan soal-soal simulasi, tetapi soal simulasi UNBK ini menjadi tolak ukur dasar dalam mempelajari soal-soal yang akan diujikan pada ujian nasional. Meskipun soal UNBK nanti tidak sama persis dengan soal simulasi berikut ini tetapi aturan-aturan dasar atau teorema-teorema dalam mengerjakan soal secara umum masih sama, terkhusus dalam pelajaran matematika. Sehingga soal-soal simulasi UNBK ini sangat baik dijadikan latihan dasar sebagai latihan dalam bernalar.
Kemampuan bernalar dapat naik jika dilatih dengan baik, kemapuan bernalar saat ini sangat jadi perhatian, apalagi karena perkembangan soal UNBK yang akan memakai beberapa soal HOTS (High Order Thinking Skils). Salah satu cara untuk dapat menyelesaikan soal HOTS adalah setidaknya kita sudah bisa memakai teorema-teorema dasar atau aturan dasar dalam mengerjakan soal sederhana atau soal LOTS (Low Order Thinking Skils), dimana untuk menyelesaikan hanya sekedar mensubstitusi variabel-variabel dari rumus-rumus yang ada.
Berikut mari kita coba soal simulasi UNBK Matematika IPA 2020 paket B. Jangan lupa untuk berlatih juga dari soal simulasi UNBK Matematika IPA 2020 paket C dan soal simulasi UNBK Matematika IPA 2020 paket A, mari berlatih dan berdiskusi😉😊
1. Diketahui persamaan kuadrat $2x^{2}-(6-m)x+m=0$ mempunyai dua akar real berbeda. Batasan nilai $m$ yang memenuhi adalah...
$\begin{align}
(A).\ & m \lt -18\ \text{atau}\ m \gt 2 \\
(B).\ & m \lt -18\ \text{atau}\ m \gt -2 \\
(C).\ & m \lt 2\ \text{atau}\ m \gt 18 \\
(D).\ & 2 \lt m \lt 18 \\
(E).\ & -18 \lt m \lt -2
\end{align}$
Untuk persamaan kuadrat yang mempunyai dua akar real beda maka diskriminan lebih dari nol.
$\begin{align}
2x^{2}-(6-m)x+m & = 0 \\
2x^{2}+(-6+m)x+m & = 0 \\
D & \gt 0 \\
b^{2}-4ac & \gt 0 \\
(-6+m)^{2}-4(2)(m)& \gt 0 \\
m^{2}-12m+36-8m & \gt 0 \\
m^{2}-20m+36 & \gt 0 \\
(m-18)(m-2) & \gt 0 \\
[m=18] & [m=2] \\
m \lt 2\ \text{atau}\ m \gt 18
\end{align}$
(*Jika masih kesulitan menyelesaikan pertidaksamaan kuadrat dengan cepat silahkan disimak caranya: Cara Kreatif Menentukan HP Pertidaksamaan Kuadrat)
$\therefore$ Pilihan yang sesuai adalah $(C).\ m \lt 2\ \text{atau}\ m \gt 18$
2. Bentuk sederhana dari $\dfrac{log\ p^{3}q-2\ log\ q + log\ p^{2}q^{6}}{3\ log\ pq}=\cdots$
$\begin{align}
(A).\ & \dfrac{5}{2} log\ pq \\
(B).\ & \dfrac{2}{5} log\ pq \\
(C).\ & \dfrac{2}{5} \\
(D).\ & \dfrac{3}{5} \\
(E).\ & \dfrac{5}{3}
\end{align}$
Untuk menyederhanakan bentuk aljabar pada soal di atas, kita perlu mengetahui sifat-sifat dasar logaritma.
$\begin{align}
& \dfrac{log\ p^{3}q-2\ log\ q + log\ p^{2}q^{6}}{3\ log\ pq} \\
& = \dfrac{log\ p^{3}q- log\ q^{2} + log\ p^{2}q^{6}}{3\ log\ pq} \\
& = \dfrac{log\ \dfrac{p^{3}q}{q^{2}}+ log\ p^{2}q^{6}}{3\ log\ pq} \\
& = \dfrac{log\ p^{3}q^{-1}+ log\ p^{2}q^{6}}{3\ log\ pq} \\
& = \dfrac{log\ \left (p^{3}q^{-1}\cdot p^{2}q^{6} \right )}{3\ log\ pq} \\
& = \dfrac{log\ \left (pq\right )^{5}}{3\ log\ pq} \\
& = \dfrac{5\ log\ pq}{3\ log\ pq} \\
& = \dfrac{5}{3}
\end{align}$
$\therefore$ Pilihan yang sesuai adalah $(E).\ \dfrac{5}{3}$
3. Perhatikan grafik fungsi kuadrat berikut.
Grafik tersebut memotong sumbu $X$ di titik...
$\begin{align}
(A).\ & (-2,0)\ \text{dan}\ (6,0) \\
(B).\ & (-1,0)\ \text{dan}\ (6,0) \\
(C).\ & (-1,0)\ \text{dan}\ (5,0) \\
(D).\ & (1,0)\ \text{dan}\ (5,0) \\
(E).\ & (1,0)\ \text{dan}\ (6,0)
\end{align}$
Untuk menentukan titik potong kurva dengan sumbu $X$, maka kita perlu ketahui persamaan kurva. Kurva pada gambar melalui titik puncak $(2,9)$ dan sebuah titik sembarang $(0,5)$.
Jika diketahui Titik Puncak $(x_{p},y_{p})$ dan sebuah titik sembarang $(x,y)$ maka FK adalah:
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
5 & = a\left (0 -2\right)^{2}+9 \\
5-9 & = 4a \\
\dfrac{-4}{4} & = a \\
-1 & = a
\end{align}$
Persamaan kurva
$\begin{align}
y & = a\left (x -x_{p}\right)^{2}+y_{p} \\
y & = (-1) \left (x - 2 \right)^{2}+9 \\
y & = (-1) \left (x^{2} - 4x+4 \right)+9 \\
y & = -x^{2} + 4x-4+9 \\
y & = -x^{2} + 4x+5 \\
\end{align}$
Memotong sumbu $X$, maka $y=0$:
$\begin{align}
0 & = -x^{2} + 4x+5 \\
0 & = x^{2} - 4x-5 \\
0 & = (x-5)(x+1) \\
& x=5\ \text{atau}\ x=-1
\end{align}$